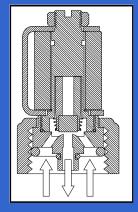


A Competitive Comparison: "PWM and the PC Needle"

On Off O.1 Seconds 50% Duty Cycle On Off O.1 Seconds 0.1 Seconds 90% Duty Cycle On Off O.1 Seconds 0.1 Seconds 90% Duty Cycle On Off

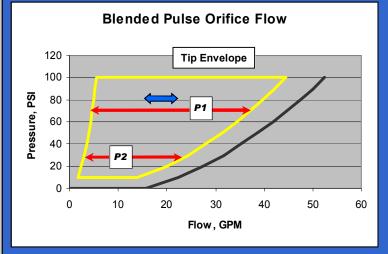
PWM Spray Technology

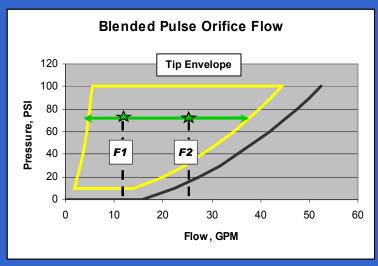

is a

New System Design

Using Standard Tips

Basic Operation:


PWM solenoid changes the operation duty cycle to change the effective tip or orifice size to maintain a set pressure or change a rate.



PWM Performance

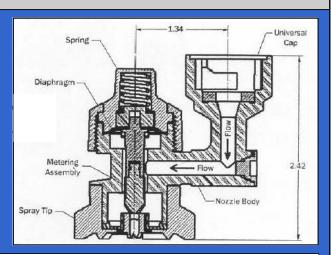
Operates within a Tip Performance Envelope:

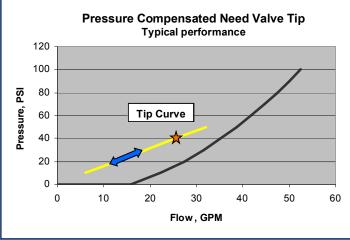
- · Larger speed range than PC Needle
- No reaction to speed changes
 - √ Pressure remains constant
 - √ Flow changes to maintain constant rate
 - √ Droplet size is constant
- Optimum coverage occurs over <u>entire</u> speed range with a single tip
- Selective "on-the-go" drift control
 - √ Operator controlled pressure change P1 to P2
 - √ Droplet size follows pressure change
- Consistent Application over entire speed range
- Variable rate capability with single tip
 - √ With a constant pressure
 - √ Toggle between R1 and R2
 - √ Respond to a variable rate map
 - √ Uses standard tips

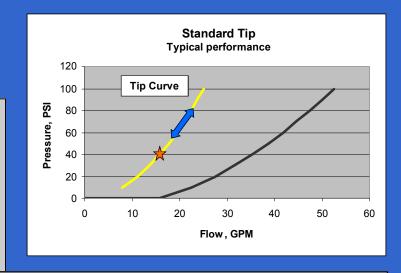
A Competitive Comparison: "PWM and the PC Needle"

The Pressure Compensated Needle Valve

is a new Tip Design
Using a Standard
System Design


Standard Tip Performance


Operates along a single Tip Curve:


- Limited speed range
- Reacts to speed changes
 - √ Creates large pressure variations
 - √ Creates large droplet variations
- Coverage optimum at a single speed, rate and pressure

- Drift potential inherent
- · Tip change often needed

PC Needle Tip Performance

Basic Operation:

Pressure change from a speed change moves a diaphragm. The diaphragm moves a plunger to change orifice size. The orifice size change limits pressure change at the tip. The pattern droplet spectrum is less.

Flatter Tip Performance Curve:

- Larger speed range than standard
- · Reacts less to speed changes
 - √ Less pressure changes
 - √ Less droplet variation
- Still performs along a single Tip Curve
 - √ Pressure still varies with speed
 - √ Pressure still varies with flow
 - √ Droplet still varies with pressure
- Optimum coverage <u>still</u> at a single speed, rate and pressure

- Still has drift potential
- Still needs tip changes
- Still wears like a tip
 - √ Expensive
 - √ Annual replacement concern
 - Pressure range and performance decreases with wear